Math 245C Lecture 14 Notes

Daniel Raban

May 1, 2019

1 Limits of Scaled Convolutions

1.1 Limits of scaled convolutions

Recall that if $\phi \in L^1(\mathbb{R}^n)$ and

$$\phi_t(x) = \frac{1}{t^n} \phi\left(\frac{x}{t}\right),\,$$

then

$$\|\phi_t\|_1 = \|\phi\|.$$

Theorem 1.1. Let $\phi \in L^1$, let $f \in L^p$ and let $1 \le p \le \infty$.

1. If $p < \infty$,

$$\lim_{t \to 0} \|\phi_t * f - af\|_p = 0, \qquad a = \int_{\mathbb{R}^n} \phi(y) \, dy.$$

2. If $p = \infty$ and f is uniformly continuous, then

$$\lim_{t \to 0} \|\phi_t * f - af\|_u = 0, \qquad a = \int_{\mathbb{R}^n} \phi(y) \, dy.$$

3. If $O \subseteq \mathbb{R}^n$ is a bounded open set, $K \subseteq O$ is compact, and $f \in C(O) \cap L^{\infty}$, then

$$\lim_{t \to 0} \|\phi_t * f - f\|_{C(K)} = 0.$$

Proof. (1) Assume 1 , and set <math>q = p/(p-1). We have

$$\phi_t * f(x) - af(x) = \int_{\mathbb{R}^n} (f(x-y) - f(x))\phi_t(y) \, dy = \frac{1}{t^n} \int_{\mathbb{R}^n} (f(x-y) - f(x))\phi\left(\frac{y}{t}\right) \, dy$$

Making the change of variables, z = y/t, we get

$$\phi_t * f(x) - af(x) = \int_{\mathbb{R}^N} (f(x - tz) - f(x))\phi(z) dz.$$

So

$$\int_{\mathbb{R}^n} |\phi_t * f(x) - af(x)|^p dx = \int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} (f(x - tz) - f(x))\phi(z) dz \right|^p dx.$$

Using Minkowski's inequality for integrals, we obtain

$$\left(\int_{\mathbb{R}^n} |\phi_t * f(x) - af(x)|^p \, dx \right)^{1/p} \le \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(x - tz) - f(x)|^p |\phi(z)|^p \, dx \right)^{1/p} \, dz$$

$$\le \int_{\mathbb{R}^n} |\phi(z)| \|\tau_{tz} f - f\|_p \, dz$$

Note that

$$\|\tau_{tz}f - f\|_p \le 2\|f\|_p, \qquad \lim_{t \to 0} \|\tau_{tz}f - f\|_p = 0.$$

So $\|\phi_t * f - f\|_p \leq \int_{\mathbb{R}^n} \psi(t, z) dz$, where $|\psi| \leq 2\|f\|_p |\phi| \in L^1$. Using the dominated convergence theorem, this completes the proof of the first claim. Note that the proof also works for p = 1.

(2) Assume $p = \infty$, and let f be uniformly continuous. Set

$$m_f(\delta) = \sup_{|x-y| \le \delta} |f(x) - f(y)|,$$

so that

$$\lim_{\delta \to 0} m_f(\delta) = 0.$$

As we have calculated above,

$$|\phi_t * f(x) - af(x)| \le \int_{\mathbb{R}^n} m_f(t|z|) |\phi(z)| \, dz.$$

But $m_f(t|z|)|phi(z)| \leq 2||f|||\phi| \in L^1$. We apply the dominated convergence theorem to obtain that

$$\limsup_{t\to 0} \phi_t * f - f|_{u} \le \limsup_{t\to 0} \int_{\mathbb{R}^n} m_f(t|z|) |\phi(z)| \, dz = 0.$$

So we get the second claim.

(3) Let $2d = \operatorname{dist}(K, O^c)$. Choose a compact $K_1 \subseteq O$ such that $K \subseteq K_1$ and $\operatorname{dist}(K_1, O^c) \geq d$. Fix $\varepsilon > 0$. It suffices to show that

$$\limsup_{t \to 0} \|\phi_t * f - f\|_{C(K)} \le \varepsilon.$$

Let R > 0 be large so that

$$\int_{\mathbb{R}^n \backslash B_R(0)} |\phi| \, dz < \frac{\varepsilon}{2(1 + \|f\|_{\infty})}.$$

Fix $x \in K$. by our earlier calculation,

$$\phi_t * f(x) - af(x) = \underbrace{\int_{B_R(0)} (f(x-tz) - f(x))\phi(z) dz}_{I_1(t)} + \underbrace{\int_{\mathbb{R}^n \backslash B_R(0)} (f(x-tz) - f(x)\phi(z) dz}_{I_2(t)}.$$

We have

$$|I_2| \le 2||f||_{\infty} \int_{X \setminus B_R(0)} |\phi(z)| dz \le \varepsilon.$$

Since K is compact and $f \in C(K_1)$, f is uniformly continuous on K_1 , and

$$\lim_{\delta \to 0} m_{K_1}(\delta) = 0, \quad \text{where } m_{K_1}(\delta) = \sup_{\substack{|z-y| \le \delta \\ z, y \in K_1}} |f(y) - f(z)|.$$

Since $x \in K$ if tR < d, then $x, x - tz \in K_1$ if |z| < R. So

$$|I_1| \le \int_{B_R(0)} m_{K_1}(tR) |\phi(z)| dz = m_{K_1}(tR) \int_{B_R(0)} |\phi(z)|.$$

Hence, $\lim_{t\to 0} I_1(t) = 0$. So we get

$$\limsup_{t \to 0} \|\phi_t * f - f\|_{C(K)} \le \varepsilon.$$

Remark 1.1. Let $\phi: \mathbb{R}^n \to \mathbb{R}$ be a Borel function. Assume $c, \varepsilon > 0$ and

$$|\phi(z)| \le \frac{C}{(1+|z|)^{n+\varepsilon}}$$

for all z. Note that $\phi \in L^p$ for any $p \in [1, \infty]$. Indeed, if $1 \le p < \infty$,

$$\|\phi_p\|^p \le c^p \int_{\mathbb{R}^n} \frac{1}{(1+|z|)^{(n+\varepsilon)p}} \, dz = C^p |S^{n-1}| \int_0^\infty \frac{r^{n-1}}{(1+r)^{(n+\varepsilon)p}} \, dr$$

There for, for any $q \in [1, \infty]$ and any $f \in L^q$, $\phi_t * f(x)$ exists.

Our goal is to show that if x is a Lebesgue point for f, then

$$\lim_{t \to 0} \phi_t * f(x) = f(x).$$